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Abstract: Process-based models are commonly used to design management strategies to reduce ex-
cessive algal growth and subsequent hypoxia. However, management targets typically focus on 
phosphorus control, under the assumption that successful nutrient reduction will solve hypoxia 
issues. Algal responses to nutrient drivers are not linear and depend on additional biotic and abiotic 
controls. In order to generate a comprehensive assessment of the effectiveness of nutrient control 
strategies, independent nutrient, dissolved oxygen (DO), temperature and algal models must be 
coupled, which can increase overall uncertainty. Here, we extend an existing process-based phos-
phorus model (INtegrated CAtchment model of Phosphorus dynamics) to include biological oxy-
gen demand (BOD), dissolved oxygen (DO) and algal growth and decay (INCA-PEco). We applied 
the resultant model in two eutrophied mesoscale catchments with continental and maritime cli-
mates. We assessed effects of regional differences in climate and land use on parameter importance 
during calibration using a generalised sensitivity analysis. We successfully reproduced in-stream 
total phosphorus (TP), suspended sediment, DO, BOD and chlorophyll-a (chl-a) concentrations 
across a range of temporal scales, land uses and climate regimes. While INCA-PEco is highly pa-
rameterized, model uncertainty can be significantly reduced by focusing calibration and monitoring 
efforts on just 18 of those parameters. Specifically, calibration time could be optimized by focusing 
on hydrological parameters (base flow, Manning’s n and river depth). In locations with significant 
inputs of diffuse nutrients, e.g., in agricultural catchments, detailed data on crop growth and nutri-
ent uptake rates are also important. The remaining parameters provide flexibility to the user, 
broaden model applicability, and maximize its functionality under a changing climate. 
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analysis 
 

1. Introduction 
Low dissolved oxygen (hypoxia) in rivers and lakes has been an increasing global 

concern since the 1980s. Hypoxia occurs within a water body, where oxygen consumption 
during aerobic decomposition of organic matter (i.e., biological oxygen demand, or BOD) 
exceeds re-aeration [1]). This can be triggered by excess nutrient availability supporting 
high rates of vegetation growth and decay; wastewater discharge; high water tempera-
tures; or slow rates of water movement. Nutrient management has been a primary 
method of hypoxia control, where reductions in phosphorus (P) loading have been found 
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to be particularly effective in many riverine systems, attributable to its control over phy-
toplankton growth [2]. 

Current global trends of increasing air and water temperatures, excessive fertilizer 
use, extreme drought events, and rising human populations are significant concerns for 
hypoxia management, as each have the potential to increase BOD within rivers [3]) and 
lakes [4]. The ability to identify regions particularly susceptible to hypoxia, and to develop 
and apply management strategies which are sustainable under future climate and land 
use change, is essential for the protection of aquatic ecosystems. Tracking these drivers 
and responses across catchments quickly becomes complex, however. Nutrients and or-
ganic matter originate from both end-of-pipe (e.g., sewage and stormwater outflows) and 
diffuse sources; the latter of which might include atmospheric deposition, fertilizer appli-
cation, plant decay, and septic system discharge. Transport of nutrients and organic mat-
ter to receiving waters differs across soil and land use types [5], by season and even during 
individual rainfall events [6]. Interactions between P, BOD and DO along flow pathways 
add to this complexity.  

Process based models are commonly used to design and implement management 
strategies for such complex systems. Although the aim of these strategies is to reduce hy-
poxia or algal growth, management targets are frequently designed around nutrient con-
trol, most frequently P. It is typically assumed that solutions to hypoxia and algal blooms 
will also follow suit. Research demonstrates, however, that algal responses to nutrient 
drivers vary both spatially and temporally, depending on additional biotic and abiotic 
controls [7]. As riverine nutrient models are rarely designed to simulate algal responses 
[8], and as comprehensive phytoplankton models are commonly focused on the water-
body component with a disconnect from terrestrial processes (e.g., QUAL2K [9]; PRO-
TECH [10]), then in order to generate a comprehensive assessment of the effectiveness of 
nutrient control strategies, nutrient models must often be coupled to independent DO, 
temperature and algal models [11].  

This method of linking disparate models can however result in the forward propa-
gation of uncertainty [12], which can become particularly large where the linked models 
are dissimilar in spatial and temporal scale [13]. Research has shown that as a result, mod-
els used in combination are often unable to simulate chemical and ecological processes at 
a comparable level of detail as they could in isolation, e.g., where linked sewer network 
and river quality models are unable to simulate seasonal variability in DO concentrations 
and water quality status [12]. By integrating chemical and ecological processes into a sin-
gle model with identical spatial and temporal resolution, this ‘explosion’ of uncertainty 
can be avoided.  

Despite the regular use of models in environmental decision-making [13] there are 
few catchment scale modelling tools available which offer managers the capacity to sim-
ulate nutrient reduction strategies across the terrestrial (urban and rural) and aquatic en-
vironment, and evaluate the ecological results using a more systems scale approach. A 
model’s ability to meet management goals is of course dependent upon the context to 
which it is applied [14], however as eutrophication problems increase, the call for inte-
grated catchment scale biochemical models is growing.  

The objectives of this study were (1) to address the research gap associated with sys-
tems modelling, by elaborating an existing process-based phosphorus model (INCA-P) to 
simulate BOD, DO and algal growth and decay; (2) to use Generalized Sensitivity Analysis 
(GSA) for identification of the most sensitive model parameters which should be con-
strained by field measurements; (3) to identify how regional differences in model appli-
cation affect parameter importance during calibration. 
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2. Methods 
The dynamic process based INtegrated CAtchment model of Phosphorus dynamics 

(INCA-P) has been applied to over 40 catchments across Europe, North America and Asia. 
Originally described in Wade et al., [15] the model can simulate fully branched river net-
works, with an unlimited number of tributaries and stream orders. The model simulates 
P pools and fluxes through subcatchments comprised of different land use types, to net-
works of multiple reaches and tributaries. A full mass balance is imposed at each level. 
Until recently, INCA-P was limited to simulating flows of water, nutrients and sediment 
[16]. In this study, a new model named INCA- Phosphorus Ecology (INCA-PEco), ex-
pands the utility of INCA-P to include dissolved oxygen (DO), biological oxygen demand 
(BOD), and in-stream phytoplankton concentrations (chl-a) through the integration of 
new process-based equations.  

INCA is a semi-distributed process-based model, meaning it can be calibrated inde-
pendently to observations made in different land uses, subcatchments and river reaches 
[17]. The flexibility that this affords is a significant advantage when applying models un-
der such different conditions, where plausibility of parameter values chosen can be con-
strained by expert judgement, literature values and field observations. With over 280 pa-
rameters within the INCA suite of models however, calibration can be time consuming, 
and if the resolution of monitoring data is low, then where parameters are highly sensi-
tive, model uncertainty can be high [18]. It is therefore essential to identify and prioritize 
parameters which have the greatest impact on model output. A complete sensitivity anal-
ysis (SA) has not previously been carried out on INCA-P, and to this end a SA of the mod-
els is conducted below. 

2.1. Model Development 
INCA-P includes both land and water phases (Figure 1), within which inputs, 

transport and storage of water, nutrients and sediment are simulated. In INCA-PEco dis-
solved oxygen (DO) and biological oxygen demand (BOD) have been added to both of 
these phases, and phytoplankton growth added to the in-stream water phase.  

 
Figure 1. Conceptual diagram of the functionality of the INCA-PEco model (adapted from Jack-
son-Blake et al. (2016)). Boxes in red indicate new processes and variables added to INCA-P to 
create INCA-PEco. 

Within the land phase there are three primary stores of water and nutrients; soil wa-
ter (SW), quickflow (QF) and groundwater (GW). Nutrients and oxygen move between 
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these stores via quickflow, saturation excess flow and percolation; and ultimately are 
transported to the water phase via throughflow, direct runoff and groundwater flow. 
Once in the water phase, nutrients and DO are influenced by solar radiation, water tem-
perature and hydrology to support phytoplankton growth, which in turn acts as an addi-
tional control on BOD. Processes occurring in upstream and tributary catchments influ-
ence those downstream, in a semi-distributed setup. An unlimited number of land uses, 
subcatchments and tributaries can be modelled, facilitating the simulation of catchment 
dynamics at any scale desired by the user. A full description of all equations contained 
within INCA-PEco is documented within SI 1, and only a summary of the new equations 
is provided here. Units for all parameters are listed in Table SI 2. 

2.1.1. Terrestrial Phase  
BOD and DO are simulated as user-defined constants in the land phase (soilwater, 

groundwater and quickflow boxes) which are subsequently adjusted by temporal varia-
tions in water volumes within the respective flow pathways. BOD can also be input 
through fertiliser additions, and adjusted via user specified decay rates. BOD and DO 
from the land phase are output to river reaches as a ‘starting point’ for processing in the 
water column, and are important for catchment mass balance purposes.  

Soil water  
Calculations for the change in water flow within the soil water (QSW_out) and the total 

soil water volume (VSW) are detailed in SI 1.1.1. For each land use category, the user enters 
an initial soil water BOD concentration (mg/l). The soil water BOD concentration can be 
reduced by a user-specified daily decay rate (RSW_BODdecay), or increased through terrestrial 
inputs of organic material, e.g., manure and plant residue (RBODfert) at user specified times 
and durations throughout the year. Change in soil water BOD mass (MBOD_SW, g km−2) is 
therefore calculated as BOD additions associated with organic material or fertiliser (RBOD-

fert, g km−2 day−1); BOD removals specified through the decay rate; and as advective 
transport out of the soil water box: 

_ = 𝑅 − 𝑅 _ × 𝑟𝑇 × 𝑀 _ − 86400 ×  𝑄  × _   (1)

where rT is a soil temperature factor, which increases the rate of BOD decay under higher 
temperatures: 𝑟𝑇 = 1.07( ) (2)

The user may also specify a constant DO value within the soilwater box (RDO_SW). 
Change in soil water DO mass (𝑀 _  g km−2) is then primarily associated with advective 
flow:  𝑑𝑀 _𝑑𝑡 = 𝑅 _  × 86400 ×  𝑄 _   × (𝑀 _𝑉 ) (3)

Quickflow 
Calculations for the change in water flow from the quickflow box (QQF) and the total 

quickflow volume (VQF) are detailed in SI 1.1.2. BOD is not simulated within quickflow as 
it is assumed that any surface runoff will be sufficiently aerated to have a BOD of zero. A 
constant DO value (RDO_QF) may be specified, similar to the mechanism used within the 
soilwater box, to simulate change in mass of DO within the quickflow box:  𝑑𝑀 _𝑑𝑡 = 𝑅 _  × 86400 × 𝑄   ×  (𝑀 _𝑉 ) (4)

Groundwater 
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Calculations for the change in water flow from the groundwater box (QGW) and the 
total groundwater volume (VGW) are detailed in SI 1.1.3. Initial BOD concentrations are 
specified by the user. Change in groundwater BOD mass (MBOD_GW, g km−2) is equal to 
BOD additions from percolation of soil water, decay of BOD and advective transport out 
of the groundwater. Where BOD percolating from the soilwater store is calculated as: 𝑀 = 𝐵𝐹𝐼 × 𝑄 𝑥 𝑀 _  × 86400 (5)

Additionally, BOD groundwater flux from each land use category is calculated as: 𝑑𝑀 _𝑑𝑡 = 𝑀 𝑉 − 𝑅 _ × 𝑟𝑇 × 𝑀 _ −  𝑄 × 𝑀 _ × 86400𝑉  (6)

where RGW_BODdecay is a user defined decay rate for groundwater BOD.  
Groundwater DO is simulated as a user-defined concentration constant (RDO_GW), and 

daily flux within a land use class associated with advective flux: 𝑑𝑀 _𝑑𝑡 = 𝑅 _  × 86400 ×  𝑄   × (𝑀 _𝑉 ) (7)

Flux 
The flux of BOD (MBODLUclass) and DO(MDOLUclass) to the river from each land use class 

(kg km−2 day−1) is calculated by summing exports from soil water, groundwater and 
quickflow: 

𝑀 =  86400 𝑄  × 𝑀 _𝑉 +  𝑄  ×  𝑀 _𝑉  (8)

𝑀 =  86400 𝑄  × 𝑀 _𝑉 + 𝑄  ×  𝑀 _𝑉  
+ 𝑄  × 𝑀 _𝑉  

(9)

The total mass of DO and BOD exported to the river reach (MBODtotal, MDOtotal) is calcu-
lated by summing totals from each land use class within each subcatchment (MBODLUclass, 
MDOLUclass): 

𝑀 =  𝐶𝑎 𝐿𝑈%100  𝑀 
 (10)

𝑀 =  𝐶𝑎 𝐿𝑈%100  𝑀 
 (11)

2.1.2. Water Phase 
Instream biological oxygen demand 
Oxidation and decay of organic matter present in the water column may reduce DO 

concentrations. This is known as the biological oxygen demand (BOD) and represents the 
amount of oxygen respired by micro-organisms during their consumption of organic mat-
ter [19]. Simulating changes in water column BOD (MBOD_WC) are essential for determina-
tion of water column DO. In INCA-PEco BOD is input from upstream reaches (MBODus), 
wastewater treatment effluent (MBODww), the land phase (MBODtotal), and from dying phyto-
plankton (BODphyto). It is output from the reach via settling (BODsettle) and advection: 
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 𝑑 𝑀 _𝑑𝑡 = 𝑀 + 𝑀 + 𝑀 + 𝐵𝑂𝐷 − 𝐵𝑂𝐷 − 86400 𝑀  × 𝑄𝑆  
(12) 

where QreachOut is reach outflow (m3s−1) and Sreach is daily river water volume (m3), detailed 
in SI 1.6. 

Microbial consumption of dead phytoplankton removes oxygen from the water col-
umn. In INCA-PEco this mass of phytoplankton oxygen demand is included in the BOD 
calculation as (BODphyto; g km−2). RPhytoBOD is a user defined parameter of the dead algae 
contribution to the BOD (mg O2 µg−1 Chl-a−1 day−1) and CPhytoDeath is concentration of phy-
toplankton dying per day (µg chl-a day−1).  

𝐵𝑂𝐷 =  𝑅 𝐶 1000𝑆  (13)

As organic matter settles and is buried within the bed sediment, it is deactivated as a 
source of oxygen demand. It is possible however that the decaying organic matter could 
later be re-suspended, and re-integrated as a BOD input. Therefore, in INCA-PEco, the 
amount of BOD which has been buried (g O2 km−2 day−1) is calculated using a net settling 
velocity (burial minus resuspension) of m day−1 which varies with reach depth: 

𝐵𝑂𝐷 =  𝑅 𝐷  𝑀  (14)

where Rnetv is a user defined parameter. 
Instream dissolved oxygen: 
Within the water column, changes in mass of DO (g km−2) are calculated by taking 

into consideration the major sources and sinks (Cox; 2002) including influx from upstream 
reaches (MDOus g km−2) and the land phase (MDOtotal g km−2), phytoplankton oxygen contri-
butions (DOphytox, g O2 km−2 day−1), and re-aeration (DOatmox, g O2 km−2 day−1). Losses of DO 
are from uptake through BOD (MBOD_decay_WC, g km−2) sediment oxygen demand (DOsod, g 
O2 km−2 day−1), and advection. Temperature is perhaps the most significant driver of DO 
concentration in water, and as such is a key factor used in calculating each parameter (see 
SI Equations (130), (132), and (133)).  𝑀𝑑𝑡 =  𝑀 + 𝑀 + 𝐷𝑂 − 𝐷𝑂 + 𝐷𝑂 − 𝑀 _ _

− 86400 ×  𝑀 _  × 𝑄𝑆  
(15)

Inputs of DO through atmospheric re-aeration (DOatmox) can be calculated either by 
the model, or set using a user-defined parameter. A full description of the atmospheric re-
aeration calculations is provided in SI 1.10.1. In summary, re-aeration is a function of the 
rate that aeration occurs (DOatmox/day), a temperature-dependent, calculated, total concen-
tration of DO which the water column can hold (Abssat) and the DO mass currently within 
the water column (MDO_WC). Oxygen contributions from algae (DOphytox) are calculated as 
a function of O2 supplied by photosynthesis (DOptsyn, g O2 km2 day−1) and consumed 
through microbial respiration (DOptResp, g O2 km2 day−1): 𝐷𝑂 =  𝐷𝑂 − 𝐷𝑂  (16)

Threshold ‘low’ and ‘high’ rates of photosynthesis are applied, determined by phy-
toplankton concentrations and daylight hours (SI 1.10.2). Removal of DO through phyto-
plankton respiration (DOptResp) is determined by phytoplankton concentration (Equation 
(24)), and a single user defined respiration slope and offset: 
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𝐷𝑂 =  𝑅 + 𝑅 × 𝐶 1.08 × 𝑆  (17)

Chemical oxidation of compounds may also occur within riverbed sediments where 
organic matter is incorporated in the channel bed, exerting a significant oxygen demand 
and influencing the in-stream DO. This ‘uptake’ of dissolved oxygen is expressed as: 

𝐷𝑂 = 𝑆𝑒𝑑 × 𝑀 _1.4 + 𝑀 _  (18)

where Sedox is determined by a user defined rate of oxidation (Rox) and water temperature: 

𝑆𝑒𝑑 = 𝑅  × 1𝐷  1.08  (19)

Decay and oxidation of organic matter in the water column (MBOD_decay_WC) reduces 
DO concentrations. A key mechanism for removal of DO from the water column is there-
fore associated with MBOD_WC (Equation (12)).  𝑀 _ _ = 𝐵𝑂𝐷 × 𝑀 _  (20)

The amount of DO removed by the BOD is positively related to stream depth and 
temperature of the water column, where if the water depth is >2.4 m: 𝐵𝑂𝐷 = 𝑂𝑥𝑖𝑑 × 1.047  (21)

Otherwise  𝐵𝑂𝐷 = 𝑂𝑥𝑖𝑑 𝐷 × 3.280848 . × 1.047  (22)

where ‘Oxid’ is a user defined parameter, determining the rate of organic matter oxida-
tion. The concentration of dissolved oxygen in the water column is expressed as: 

𝐶 _ = 10  × 𝑀 _𝑆  (23)

To ensure that BOD cannot cause the DO concentration to become negative, oxygen 
loss is set to zero if there is insufficient DO to satisfy the BOD requirements. DO is also 
limited to 300% of the DO saturation value (DOsat%). Water column DO saturation is de-
pendent upon the following relationship with water column temperature (Tempwc) (SI 
1.10) 𝐷𝑂 % = _  ×   (24)

In-stream phytoplankton 
The concentration of phytoplankton in the water column is critical for calculations of 

DO and BOD mass; considering the influence of phytoplankton respiration, photosynthe-
sis and death on instream processes (Equations (15) and (16)). In INCA-PEco, phytoplank-
ton is represented in units of chlorophyll (µg l−1).  𝑑𝐶𝑑𝑡 =  𝐶 +  𝐶 − 𝐶  (25)

There are no direct land phase additions of phytoplankton to the water column. In-
stead the model is first balanced by calculating the change in phytoplankton inputs from 
the upstream, minus the outputs from the downstream; referred to here as advection (Cphy-

toAdv). 
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𝐶 =  𝐶 _ − 𝐶𝑆𝑄  ×   (26)

Subsequently, phytoplankton inputs and outputs associated with growth and death, 
respectively, are calculated. It is important that at least one upstream reach is initialized 
with Cphyto > 0, in order for phytoplankton growth to propagate throughout the model. 

Phytoplankton response to light, temperature and nutrient availability varies with 
the morphology of species within the algal community [20]. The phytoplankton growth 
(CPhytoGrowth) equation has therefore been designed to enable the user to specify phyto-
plankton community response to each of light, temperature, nutrients and self-shading. 
User-defined thresholds can also be set to initiate or cut-off specific drivers. This makes 
the phytoplankton component of the model particularly adaptable to environments with 
seasonal blooms, ice-on and ice-off events, extreme light reductions, extreme temperature 
changes, or with blooms of particularly dominant species.  

𝐶 = 𝑅  × 𝐶  × 𝑟𝑇 × 𝑟𝑆𝑅 × 𝐶𝑅  × 𝑅𝑅 + 𝐶  (27)

where rT and rSR are thresholds below which temperature and light become a limiting 
factor on algal growth; where: 

When  𝑇𝑒𝑚𝑝 < 𝑅𝑇𝑒𝑚𝑝 ;   𝑟𝑇 = 1.066  (28)

Otherwise  𝑟𝑇 = 1 (29)

Additionally, when 

𝑅 < 𝑆𝑜𝑙𝑎𝑟𝑅𝑎𝑑𝑆𝑜𝑙𝑎𝑟𝑅𝑎𝑑 𝑚𝑎𝑥 ∶ 𝑟𝑆𝑅 =  𝑆𝑜𝑙𝑎𝑟𝑅𝑎𝑑𝑆𝑜𝑙𝑎𝑟𝑅𝑎𝑑 𝑚𝑎𝑥 (30)

Otherwise  𝑟𝑆𝑅 =  1 (31)

where Rsolar is a user-defined light threshold for growth, expressed as a fraction of annual 
maximum solar radiation (0–1); and where SolarRad, and SolarRadmax are calculated pa-
rameters (SI 1.11.1). Rsrpmax is a user defined SRP threshold at which phytoplankton growth 
is not limited by nutrient availability; Rgrowth is a user defined rate of phytoplankton 
growth, and Rphytoshade is the user-defined chl-a concentration at which phytoplankton 
growth becomes self-limiting. 

Death of phytoplankton (CPhytoDeath) is controlled by a user defined daily rate (Rphy-

todDeath), which should be considered a synecological representation (i.e., death including 
that by foraging of higher order consumers): 𝐶 = 𝐶  × 𝑅  (32)

2.2. Model Applications  
To assess robustness and transferability of the model, INCA PEco was applied to two 

mesoscale catchments, one representative of a continental climate, and one of a maritime 
climate; each located on different continents and run during separate time periods (Table 
1). Catchments and model run periods were selected to allow calibration across the widest 
possible range of conditions, while being supported by the greatest spatial and temporal 
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availably of observed data. The Beaver River catchment, Ontario, Canada has a continen-
tal climate. It was selected based on its availability of high frequency monitoring data 
across all variables of interest and occurrence of freeze–thaw events (Table 1). A detailed 
site map can be found in SI3 and Crossman and Elliot [21]. The Beaver River is fed by 
tributaries from 26 sub-catchments and is in turn a tributary of Lake Simcoe (722 km2), to 
which the Beaver River contributes some of the largest P loads. Lake Simcoe drains into 
Lake Huron via the Severn River and Georgian Bay. As a significant water resource both 
economically and societally, Lake Simcoe has historically supported fishing, tourism and 
drinking water supplies. Declining water quality was first noticed around the 1970s asso-
ciated with excess P, algal blooms and reduced availability of dissolved oxygen. Since this 
time, Lake Simcoe and its tributaries have been the focus of collaborative restoration ef-
forts between federal, provincial and municipal managers. The catchment is dominated 
by agricultural land (65%), with significant low-lying wetland areas (20%). As urban cov-
erage is low (5%), there are just two sewage treatment works in the area, with rural dwell-
ings predominantly connected to septic systems. The catchment has a high proportion of 
low-permeability clayey soils and a high density of tile drains, associated with high runoff 
rates and macropore flow, respectively.  

Table 1. Catchment characteristics as represented in INCA PEco. 

Model Application Characteristics Beaver River, Canada Trent River, UK 
Outflow Location 44°25′56.32″ N 

79°10′0.89″ W 
53°14′43.27″ N 
0°46′37.26″ W 

Köppen-Geiger Climate Zone DfB CfB 
Catchment Area (km2) 327  8500 

2015 Average annual flow (m3/sec) 2.9 88.9 
Sub catchments modelled 26 20 
Agricultural land use (%) 65 35 

Urban area (%) 5 15 
Groundwater contribution (%) 65% 63% 

Average summer temp (°C) 18.9 16.4 
Average winter temp (°C) −5.9 4.5 
Total annual rainfall (mm) 777 747 

To compliment the high frequency, short duration application of INCA PEco to the 
Beaver catchment, the model was also applied to the Trent catchment, UK, in which meas-
urements of DO and BOD have been conducted since 2000 [22]. A detailed site map can 
be found in SI 3 and Bussi and Whitehead [23]. The UK experiences a maritime climate. 
The Trent catchment is over 25 times larger than the Beaver catchment, and flows into the 
North Sea via the Humber Estuary. Land use in the catchment consists of a mixture of 
arable agriculture, pasture and grassland (75%), with an urban coverage of 15%, draining 
the major UK cities of Birmingham, Derby, Nottingham and Leicester. Throughout its 
course, the river serves a population of over 7 million [23] and performs several important 
functions. In the northwest it drains the Peak District, a National Park and area of geolog-
ical, ecological and cultural significance. To the south, the river receives sewage effluent 
contributions from Birmingham and Leicester. Water quality concerns surrounding the 
Trent have persisted since the 19th century, associated with storm-sewer overflows, un-
treated runoff, and discharge from industrial and sewage treatment works [24]. 

The 30 year climate of the two regions (1985–2015) is very different. The Beaver catch-
ment in Ontario is situated in Köppen-Geiger climatic zone Dfb, or ‘humid continental, 
compared to the Trent catchment in the UK which is located in Köppen-Geiger climatic 
zone Cfb, or ‘temperate oceanic’ [25]. In the Beaver catchment, peak temperatures occur 
in summer (June-August) and are between 27–30 °C, versus just 17.3 to 26.7 °C in the Trent 
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River catchment. Minimum temperatures occur in winter (December-February) and are 
at between −23.5 to −28 °C (Beaver) and −7.5 to 0.6 °C (Trent). Differences in annual pre-
cipitation in the two catchments are smaller, at an average of 777 mm in the Beaver and 
747 mm in the Trent. However, the Beaver River catchment receives a large seasonal input 
of snow, of between 92 cm during winter, and 27 cm during spring (or 92 mm and 27 mm 
of rainwater equivalent). 

Model Setup 
Earlier INCA-P applications for the Beaver [21] and the Trent [23] were re-calibrated 

within the new INCA-PEco model, using additional observations of phytoplankton (chl-
a), DO and BOD. Details of forcing data, model setup and calibration strategy are pro-
vided in Crossman and Elliot [21] and Bussi and Whitehead [23]; and only a summary of 
the process is given here. The two study catchments were subdivided into their constitu-
ent subcatchment networks (26 for the Beaver, and 20 for Trent) using ArcHydro GIS soft-
ware, and hydrological networks developed from 50 m digital elevation models. The fol-
lowing land use classes were employed: urban, intensive-agriculture, non-intensive-agri-
culture, wetlands and forest (Beaver); and woodland, grassland, improved grassland, ar-
able, urban and water (Trent). INCA-PEco is forced using a daily time series of precipita-
tion, temperature, soil moisture deficit (SMD) and hydrologically effective rainfall (HER). 
For both model applications, the SMD and HER time series were generated using the pro-
cess-based rainfall-runoff model PERSiST [26]. Meteorological data for the Beaver catch-
ment was obtained from the Daymet daily surface weather data [27]; and for the Trent 
catchment from the UK met office [28]. 

In the Beaver, fertilizer P application rates to agricultural lands were estimated using 
a combination of provincial legislation [29] and crop growth statistics [30]. Septic system 
inputs to soils were calculated using average household P load [31], combined with num-
bers of households connected to septic systems in the catchment [32]. Wet and dry atmos-
pheric deposition was calculated using monitoring data reported in Ramwekellan et al. 
[33]. Initial soil P concentrations were based on literature values [34]. Soil equilibrium co-
efficients were calculated using laboratory values [35–37]. In rivers, effluent inputs from 
sewage treatment works were obtained from XCG and KMK consultants, and groundwa-
ter P concentrations were calibrated using observed monitoring data from the Provincial 
Groundwater Monitoring Network [38]. Monitoring of flow, total phosphorus (TP), dis-
solved phosphorus (DP) and soluble reactive phosphorus (SRP) has been conducted in 
the Beaver River, across all subcatchments since the early 1980s. These data were used for 
model calibration. 

For the Trent simulation, arable fertilizer applications had been found to be a minor 
source of P to this watercourse [23] and so in the model no P was added to soils via ferti-
lisers. Furthermore, septic systems are uncommon in the UK and were also not included 
in the model calibration. Atmospheric P deposition was calculated using UK estimates of 
soil nutrient balances [39]. Wastewater inputs were calculated as a proportion of the pop-
ulation living in each sub-catchment [40]. Groundwater P concentrations were calibrated 
using water quality data provided by the Environment Agency Water Quality Data Ar-
chive. Consistent water quality data is available from 2010–2016, and the model was cali-
brated to SRP and flow data in one of the last non-tidal reaches proximal to the catchment 
outflow. 

The empirical data required for BOD, DO and phytoplankton modelling (e.g., chl-a, 
temperature and DO) within the Beaver River were available at an almost daily time-step 
for a 12-month period between 2015 and 2016, for a relatively short stretch of river proxi-
mal to Lake Simcoe. No daily BOD data was available in the Beaver catchment. For the 
Trent, all data was available for the full time period (2010–2014); albeit at a lower resolu-
tion (maximum of twice per month). Calibration coefficients (R2 and mean absolute error; 
MAE) were calculated for all variables, at a monthly timescale. 
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2.3. Sensitivity Analysis 
An SA of both model applications was conducted to determine how climate and land 

use-related differences between the catchments might affect prioritization of parameters 
in the calibration process. For instance, climatic extremes (freeze–thaw in the Beaver vs. 
milder conditions in the Trent) and land use differences (higher agricultural influence in 
the Beaver vs. point-source urban influence in the Trent) could affect the significance of 
overland flow processes in spring. Both model applications were run through 50,000 sim-
ulations, under 50,000 different parameter sets which were generated by randomly vary-
ing 33 of the model parameters using uniform sampling. Kling and Gupta Efficiency 
(KGE) goodness-of-fit statistics were calculated for each model run at the catchment out-
flow (Beaver) or at one of the last non-tidal reaches (Trent) using observed daily flow, in-
stream P concentration (TP, TDP or SRP depending on availability of observed data), phy-
toplankton concentration, and dissolved oxygen concentration (SI 4). Model performances 
were grouped into either good (behavioural) or bad (non-behavioural) results; where 
good behaviours were defined as the 98th percentile of all KGE values obtained in the 50K 
simulations. The sensitivity of model performance to parameter variance was then meas-
ured by calculating the Kolmogorov–Smirnov (KS) of the difference between the behav-
ioural distribution and a uniform distribution. The sensitivity results (KS) for flow, phos-
phorus, phytoplankton, and dissolved oxygen were plotted and compared for both model 
applications, using a sensitivity heat map developed in the open-source online graphing 
tool Plotly (http://chart-studio.plotly.com accessed February 2nd 2021), similar to those 
used in Harman et al. [41], and Niida et al. [42]. 

3. Results and Discussion 
3.1. Calibration 

In the Beaver model, flow simulations were excellent, with an R2 of 0.96 and mean 
absolute error (MAE) of −0.28. TP and TDP concentrations modelled at the mouth of the 
river corresponded with observed data (Figure 2A,B) with an R2 of 0.1 and 0.6, respec-
tively, and MAE of −0.09 and −0.26. Dissolved oxygen concentrations were well repre-
sented by INCA PEco (Figure 2D) with an R2 value of 0.7 and MAE of >0.01. Although 
available at a very high temporal resolution (once every two days), observed chlorophyll-
a data in the Beaver River were available for only a short time period, and over a limited 
spatial resolution. An R2 value of 0.7 was achieved, with MAE of >0.2, with 80% of ob-
served data points lying within ±1 SD of the modelled values (Figure 2C). 
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Figure 2. Calibration results of (A) TP concentration (B) TDP concentration, (C) chl-a concentration and (D) DO concen-
tration within the river mouth of the Beaver River catchment between 2015 and 2017. 

The model does an excellent job of simulating the low phytoplankton concentrations 
from late fall to early spring (Figure 2C) in the Beaver River, when growth is limited by 
temperature and light availability, particularly from December to February where light is 
restricted due to ice cover. During spring melt (beginning around February 2nd and end-
ing on May 25th), a rise in in-stream chl-a concentrations occurred in both observed and 
modelled data. Increases in phytoplankton following ice break-up is known as a ‘spring 
bloom’, a phenomena which is commonly observed in seasonally ice-covered lakes 
[10,43], although sensitivity to ice-cover is also not uncommon in rivers [44]. During ice 
cover, nutrient concentrations build up due to limited photosynthetic activity which 
would otherwise act to reduce them. During spring, as ice melts, temperature and light 
availability increase, and phytoplankton growth accelerates [45]. This growth is initially 
not limited by nutrients due to the large available store, and hydrologic flushing of soils 
by snowmelt [46]. The bloom rapidly subsides as nutrients are either washed away by 
large volumes of spring meltwater, or are used up by algal growth. A second peak in chl-
a is observed in summer in the Beaver River, when terrestrial P from fertilizer applications 
is washed into rivers during precipitation events [47] (Figure 2C). Nutrients, however, 
appear to remain the limiting factor for chl-a concentrations until late fall, when declining 
temperatures and shorter daylight hours once again begin to limit phytoplankton growth. 
The interactions of temperature and light in limiting algal growth have been well docu-
mented in the literature (e.g., [48]). DO concentrations begin to drop during higher chl-a 
concentrations in summer (Figure 2D), likely associated with an increase in BOD from 
decaying phytoplankton. Further exploration of this is provided in the sensitivity analy-
sis. 

Trent 
In the Trent application, flow simulations were also good, with an R2 of 0.88 and 

mean absolute error (MAE) of <0.01. The observed patterns of TDP nutrient concentra-
tions, which were highest during periods of low flow, were also well simulated (Figure 
3A) with R2 of 0.63 and MAE of 0.08. Similarly, dissolved oxygen concentrations (Figure 
3D) had an R2 value of 0.74 and MAE of −0.02. In the Trent, chlorophyll-a data (Figure 3C) 
were available at a much lower temporal resolution, but for a longer time period (4 years) 
and here an R2 value of 0.49 was achieved, with MAE of 0.57, where 89% of observed data 
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points lay within ±1 SD of the modelled values. In this catchment, observed BOD data 
was available for calibration (Figure 3B), and with an R2 of 0.3, and an MAE of 0.41. 

 
Figure 3. Calibration results of (A) TP concentration (B) TDP concentration, (C) chl-a concentration and (D) DO concen-
tration in the Trent River between 2010 and 2015. 

In the Trent, spring phytoplankton blooms are well captured by INCA PEco (Figure 
3C), followed by periods of lower concentrations in summer with a winter minima. The 
spring blooms occur during periods of lower flow, as light availability and temperatures 
begin to increase [49]. Point sources are the dominant nutrient input in this catchment, 
and low discharge results in concurrent increases in availability of bioavailable phospho-
rus [23]. These ideal conditions for phytoplankton growth, combined with reduced rates 
of hydraulic flushing [50] and associated reduced advection (Equation (26)), explain the 
rapid increase in phytoplankton concentrations during April and May. In winter, high 
discharges are associated with higher rates of flushing, and greater loss of phytoplankton 
mass through advection; and with lower availability of nutrients due to dilution. In addi-
tion, algal growth rates can be limited by cool winter temperatures and shorter daylight 
hours [48]. 

The lower summer phytoplankton concentrations in the Trent have been discussed 
since the 1980s. The summer discharge minima, combined with light, temperature and 
phosphorus maxima would suggest ideal conditions for algal growth, and it has been pos-
ited that some form of subsequent ‘loss’ mechanism is responsible, for example high death 
rates [49]. The precise process has however remained unclear. INCA-PEco reproduces 
these low summer phytoplankton concentrations in the Trent primarily through the 
mechanism of ‘self shading’ (Equation (27)), suggesting that in summer, phytoplankton 
mass becomes limited by water volume. Following spring blooms, as water volumes ap-
proach a summer minima, algae concentrations are higher than the water volume can 
support, and despite high incident solar radiation, algae within the water column of the 
Trent cannot access that light due to obstruction by the presence of phytoplankton around 
them [51]. Rather than a ‘loss’ process therefore, INCA PEco suggests that lower-than-
expected summer blooms in the Trent are caused by in situ limitations on growth. In the 
Trent, peak BOD occurs during the spring, coinciding with algal blooms; however mini-
mum DO is still observed during the summer low flow minima. Summer hypoxia in this 
river is therefore unlikely to be caused by phytoplankton blooms or by BOD, and is more 
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likely associated with high summer water column temperatures during these periods of 
low flow. 

Through placing user-defined thresholds upon the temperature and solar-radiation 
equations, within the phytoplankton growth equations, these models applied to different 
continents and climatic regions demonstrate that algal growth can be limited below cer-
tain temperatures and light conditions (e.g., during winter or under low flow conditions), 
while enabling significant growth responses to excess nutrient availability in the absence 
of those limiting factors (in spring and summer). The successful calibration of the model 
to both the Trent and Beaver catchments highlight the benefits provided by the flexibility 
of these user-defined thresholds, facilitating application both to systems which are tem-
porarily ice-covered, and to those which are open year round. 

3.2. Sensitivity Analysis 
3.2.1. Flow and P 

The sensitivity analysis (Figure 4) demonstrates that the accuracy of the Beaver River 
and Trent model calibrations are highly sensitive to variations in base-flow index value 
(KS > 0.6, p < 0.1), which likely reflects their high contributions from groundwater (40% 
Trent, 65% Beaverton). The Beaver application, however, also demonstrates a high sensi-
tivity of flow to maximum infiltration rates of soils (KS > 0.7, P < 0.1), which is not observed 
in the Trent. This is likely due to higher infiltration excess characteristics and shorter soil 
water residence times within the Beaver catchment. The accuracy of flow calibrations (and 
by association, the in-stream nutrient concentrations) in both models are highly sensitive 
to the stream bed roughness co-efficient (Manning’s n) and river depth. These parameters 
are components of the Manning’s equation (SI 1.6, Equations (79)–(86)), which controls 
changes in river flow, volume, water depth and channel width. In the Trent application, 
concentrations of nutrients are highly sensitive only to these flow parameters. 

 
Figure 4. A sensitivity heat map for the Beaver and Trent model applications, using Kolmogorov–Smirnov (KS) values to 
indicate sensitivity of model performance to parameter variance. 

P concentrations (TDP and TP) in the Beaver application show additional sensitivity 
to several terrestrial parameters associated with agricultural management, including 
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plant growth start day (TP and TDP, KS > 0.18, P < 0.06), plant growth period (TDP, KS > 
0.25, P < 0.01), and plant nutrient uptake rate (TP, KS > 0.32, P < 0.01). This stark contrast 
in sensitivity with the Trent application is likely due to the higher fertilizer applications 
and significant diffuse sources of P in the Beaver catchment. The Beaver is 65% agricul-
ture, with annual P application rates of 0.5 kg ha−1. Uptake of soil P through vegetation 
growth (SI 1.3.1 Equations (50)–(55)) is therefore a primary nutrient control where the 
model is applied in agriculturally dominant regions. Similar sensitivities to vegetation 
growth have been found of the Soil Water Assessment Tool (SWAT) model [52]. In con-
trast, previous studies conducted on the Trent have shown diffuse terrestrial P contribu-
tions to be negligible compared to direct P inputs from sewage effluent, owing to the large 
populations living within the catchment [23]. The Trent model was therefore simulated 
without fertilizer P inputs, and as a result, primary nutrient contributions in this model 
are from end-of-pipe sources, e.g., sewage effluent; bypassing these terrestrial processes. 

In the Beaver River application, TDP and TP calibration accuracy is also sensitive to 
the water column Freudlinch isotherm constant (FIC), and in-stream concentration of 
small clay particles, known in the model as ‘background sediment release’ (TDP). The FIC 
controls P transfer rates between the dissolved and particulate phase (SI 1.8.2 Equation 
(115)), and background sediment release simulates the sustained mobilisation of fine-
grained sediments from the stream channel during low flow conditions (SI 1.7.3 Equation 
(96)). The particles act as sites for TDP absorption in the water column, thus also impacting 
conversion rates between TDP and PP. The Beaver was calibrated using observed data of 
TP, TDP, sediment and PP; meaning the conversion between these fractions is carefully 
constrained. In this catchment, 45% of TP was attributed to PP. In the Trent however, less 
than 0.1% of the modelled TP was attributed to PP. In the Trent, TP data is not regularly 
available, and it is therefore not possible to calculate either the FIC or background sedi-
ment release rates. It is likely that the assumed low contribution of PP to instream pro-
cesses is the reason for the low sensitivity of these parameters in the Trent applications. 

3.2.2. Phytoplankton Concentration 
In both catchments, phytoplankton concentration was highly sensitive to parameters 

associated with the phytoplankton growth equation (Figure 4; Equation (27) and SI 1.11 
Equation (154)), including algal growth rate (KS > 0.18, P < 0.08); self-shading (KS > 0.19, 
P < 0.06) and solar radiation (KS > 0.27, P < 0.01). The Trent application however demon-
strated a much higher sensitivity to self-shading than that seen in the Beaver River (Figure 
4). Phytoplankton concentrations are 10 times higher in the Trent than in the Beaver; in-
dicating that the importance of self-shading as a limiting factor will to some extent be 
dependent upon relative in-stream concentrations. The spatial variance in self-shading 
influence was similarly noted in a study by Whitehead et al. [8]. In both applications the 
accuracy of phytoplankton concentration calibrations was also highly sensitive to flow 
volume through the Manning’s roughness coefficient (KS > 0.22, P < 0.01), and, in the case 
of Trent, also the base-flow index (KS > 0.21, P < 0.02). River discharge controls the 
transport of phytoplankton from upstream reaches, residence time of phytoplankton 
within the water column (flushing rates), and phytoplankton outflow (Equations (25) and 
(26); and SI 1.11 Equations (152) and (153)). Both model applications also demonstrated 
sensitivity of phytoplankton growth to nutrient limitation, defined in Equation (27) as: 𝐶𝑅  

where CSRP is the concentration of SRP, and RSRPmax is a user defined threshold concentra-
tion of SRP at which phytoplankton growth is uninhibited by nutrient availability. The 
Trent was directly limited through a sensitivity to ‘maximum SRP for algal growth’, or 
RSRPmax (KS > 0.43, P < 0.01). The Beaverton application demonstrated a more indirect sen-
sitivity to nutrient limitation, where phytoplankton concentration was sensitive to multi-
ple parameters which also control the concentration of in-stream phosphorus or the ‘CSRP’ 
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component of the equation; including FIC (KS > 0.24, P < 0.01), background sediment re-
lease (KS > 0.32, P < 0.01), and plant growth start date (KS > 0.31, P < 0.01). The Trent 
application was more sensitive to the temperature threshold component of the phyto-
plankton growth equation. This threshold represents a limit below which algal growth 
becomes restricted, and indicates a sharp change in accuracy at between 8 and 9 °C. Sev-
eral reasons for this difference in temperature sensitivity are plausible. As a region with 
no seasonal ice cover, phytoplankton communities within the Trent are more exposed to 
cool winter conditions which may become the limiting factor on algae population size. 
These results correspond with previous findings in the UK [53] where algal growth was 
inhibited at temperatures below 10 °C. In contrast, during cooler conditions in the Beaver 
catchment, ice cover frequently topped with snow shields phytoplankton communities 
from extreme temperature conditions; and instead, restricts light which may then become 
a primary limiting factor during winter [54]. 

3.2.3. Dissolved Oxygen 
In both model applications, the accuracy of DO calibrations were highly sensitive to 

the same parameters that influenced flow (Figure 4), including Manning’s n (Beaver and 
Trent; KS > 0.35, P < 0.01) and river depth (KS > 0.17, P < 0.1). Manning’s n and river depth 
parameters control in-stream velocity, which is a primary component of the atmospheric 
re-aeration calculation (SI 1.10 Equation (132)). Indeed, the accuracy of DO calibrations in 
both models are highly sensitive to the calculated re-aeration parameter (KS in the Trent 
and Beaver 0.65 and 0.29, respectively; P < 0.1). Again the predominantly groundwater-
fed Trent catchment had a higher sensitivity to base-flow (KS > 0.18, P < 0.1), likely reflect-
ing a higher input concentration of DO from this source. 

The DO in both applications were also highly sensitive to parameters associated with 
phytoplankton concentration, including maximum SRP (KS > 0.28, P < 0.01) and algal 
growth rate (KS > 0.21, P < 0.03). DO sensitivity in the Trent was additionally strongly 
associated with self-shading (KS > 0.21, P < 0.03); whereas the Beaverton was associated 
with algal death rates (KS > 0.29, P < 0.01). The similarities in application sensitivities here 
reflect the importance of oxygen contributions from photosynthesis (Equations (16) and 
(17), and SI 1.10 Equation (141)–(145)), which in turn are reliant on phytoplankton concen-
tration, which can be limited by growth rates and the availability of nutrients (Equation 
(27) and SI 1.11 Equation (154)). The ‘self-shading’ sensitivity exhibited by the Trent is a 
self-limiting component of the phytoplankton growth equation. 

The high sensitivity of DO concentrations to algal death rates in the Beaver applica-
tion is not represented in the catchments’ phytoplankton sensitivities, indicating that the 
influence of death rate is through an increase in BOD (Equation (12) and SI 1.9 Equations 
(124) and (125)), rather than through a decline in photosynthesis (Equation (25) and SI 1.11 
Equation (152)). The Trent does not exhibit a strong DO sensitivity to algal death rates, 
indicating a weaker influence of BOD over DO in the Trent catchment. A possible reason 
for this is the contrast in seasonal bloom behaviours between the sites. In the Beaver, phy-
toplankton peak in summer, when temperatures are highest, decay rates fastest and DO 
at a minima. In a slow flowing water body, and with phytoplankton concentrations pre-
dominantly below the self-shading threshold, dying algae would have a long residence 
time, and optimal opportunity to impact BOD (e.g., [55]). In contrast in the Trent, phyto-
plankton blooms occur only in spring, when temperatures are lower, flow rates and DO 
concentration are not at their minimum. During this period dying algae are more rapidly 
flushing into the estuary, and they have less of an impact on BOD. In the Trent during the 
lowest flow periods, algae exceed the self-shading threshold and are unable to bloom. 

Despite some differences in responses between model applications, the sensitivity 
analysis of INCA-PEco generally indicates similar dominant model responses. Both ter-
restrial and in-stream hydrology appears to be the key influential driving mechanism 
throughout INCA-PEco, influencing concentrations of phosphorus, phytoplankton, DO 
and the impact of phytoplankton death on BOD. It is therefore critical that hydrological 
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parameters be carefully calibrated prior to the assessment of other variables within the 
model. Terrestrial management strategies have a similar model-wide influence where dif-
fuse applications of nutrients are found. 

3.3. Study Limitations and Further Research 
The inclusion of DO, BOD and phytoplankton in the INCA model presents multiple 

advantages over coupling different process-based models; including, but not limited to, 
the ability to assess the direct impact of nutrient management strategies on ecosystem 
health. There remain however several opportunities for further development of INCA-
PEco. 

First, high frequency datasets were selected for the calibration of the study catch-
ments, as lower temporal resolution data such as monthly grab samples have been 
demonstrated to be insufficient to identify causes of variations in phytoplankton biomass 
[53]. Using these data, assessment of model accuracy can be performed to a more man-
agement-relevant timescale, e.g., weekly or daily. As such high-resolution data has only 
recently become available, the lengths of these datasets are insufficient to support perfor-
mance assessments on broader timescales (e.g., seasonal or annual). Future research might 
include additional model performance across longer timescales, as further observed data 
becomes available. 

Second, INCA-PEco currently simulates the total phytoplankton concentration 
within the water column, but does not simulate different species which make up that com-
munity. While it has been established that total biovolume is closely associated with en-
vironmental conditions [56], it is more difficult to predict community composition [57]. 
The community composition is important however, as individual phytoplankton groups 
differ in their effects (e.g., toxicity, decay rates, nutrient requirements). As such, INCA 
PEco’s current focus on biovolume does pose some limitations in applicability for long 
term modelling efforts, e.g., under climate simulations. As water temperature conditions 
change over time, so too can the dominance of particular algal communities [58] as their 
relative competitive advantages are either enhanced or suppressed. Changes in commu-
nity dominance driven by climate change, could alter a community’s sensitivity to other 
stressors (e.g., nutrient availability), meaning thresholds of sensitivity established during 
calibration periods may vary under future climates. While it is not the intention of INCA-
PEco to simulate the biomass of a specific algal species, but to simulate the BOD and DO 
concentrations resulting from phytoplankton community growth, accurate modelling of 
community growth assemblages can also be important. As a next step, to enable more 
specific assessments of the impact of a changing climate on particular bloom types, the 
modelling of individual communities could be adapted (e.g., diatoms, microcystis, dino-
flagellates). These communities may be grouped by their sensitivity to specific thresholds 
such as temperature resilience and nutrient requirements (e.g., [20]). 

INCA-PEco in its current form, however, can still successfully be used as a manage-
ment tool to identify sources and causes of current bloom events, and to assess potential 
effectiveness of considered nutrient control strategies under a changing climate. 

4. Conclusions 
INCA-PEco provides the functionality to integrate point and diffuse transport of DO 

and BOD to rivers, simultaneously with phosphorus and sediments, and to simulate sub-
sequent instream interactions with seasonal phytoplankton blooms. These additional pro-
cesses bridge the gap between phosphorus management strategies and ecological re-
sponses, enabling users to simulate how policy objectives might best be achieved. 

Sensitivity analyses indicate that calibration time might be optimized in all models 
by initially focusing on the hydrological parameters of base flow, Manning’s n and river 
depth. An accurate calculation of the base flow index is critical in minimizing model un-
certainty. In applications where diffuse inputs of nutrients are significant, e.g., in heavily 
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fertilized catchments, detailed data on terrestrial vegetation growth and crop type (nutri-
ent uptake rates) are also recommended. Furthermore, where surface flow and soil 
throughflow are dominant, historic datasets of regional infiltration rates would be bene-
ficial. 

In summary, while INCA-PEco comprises more than 268 parameters, model uncer-
tainty can be significantly reduced by focusing calibration efforts and watershed monitor-
ing resources on just 18 of those parameters. This does not render the other parameters 
ineffective however, as they provide flexibility to the user, broadening the applicability of 
the model, and maximizing its functionality under a changing climate. For instance, as 
temperatures increase, the limiting temperature threshold for growth will be crossed less 
frequently and blooms will be limited by other factors (e.g., nutrients or light). In systems 
where low winter temperatures are a dominant driving factor (the Trent), this will have 
significant implications for phytoplankton and DO concentrations. The user-defined 
thresholds provided in INCA-PEco ensure that the impact of these changing climatologi-
cal conditions on ecological processes will be included when simulating sustainability of 
management options. 

Supplementary Materials: The following are available online at www.mdpi.com/2073-
4441/13/5/723/s1, SI1: INCA-PEco supplementary equations documentation; SI 2: Full list of INCA 
PEco parameters with units; SI3 Site map of (a) Beaver River catchment boundaries, Ontario and (b) 
Trent River catchment boundaries, UK. The black dot indicates the location of INCA PEco applica-
tion; SI4 Figure 1 Kling Gupta Efficiency statistics (Sensitivity analysis) for Beaver land phase anal-
ysis; SI4 Figure 2 Kling Gupta Efficiency statistics (Sensitivity analysis) for Beaver aquatic phase 
analysis; SI4 Figure 3 Kling Gupta Efficiency statistics (Sensitivity analysis) for Trent River land 
phase analysis; SI4 Figure 4 Kling Gupta Efficiency statistics (Sensitivity analysis) for Trent River 
aquatic phase analysis. 
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